NEMO and Nonpoint Source Pollution

The Southwestern United States, including the state of Arizona, is the fastest growing region in the country. Because the region is undergoing rapid development, there is a need to address health and quality of life issues that result from degradation of its water resources.

Water quality problems may originate from both “point” and “nonpoint” sources. The Clean Water Act (CWA) defines “point source” pollution as “any discernable, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft from which pollutants are or may be discharged” (33 U.S.C. § 1362(14)).

Although nonpoint source pollution is not defined under the CWA, it is widely understood to be the type of pollution that arises from many dispersed activities over large areas, and is not traceable to any single discrete source. Nonpoint source pollution may originate from many different sources, usually associated with rainfall runoff moving over and through the ground, carrying natural and manmade pollutants into lakes, rivers, streams, wetlands and ground water. It is differentiated from point source pollution in that, for some states such as Arizona, there are no regulatory mechanisms by which to enforce clean up of nonpoint source pollution.

Nonpoint source pollution is the leading cause of water quality degradation across the United States and is the water quality issue that NEMO, the Nonpoint Education for Municipal Officials program, and this watershed-based plan will address.

The National NEMO Network, which now includes 32 educational programs in 31 states, was created in 2000 to educate local land use decision makers about the links between land use and natural resource protection. The goal of the network is to “help communities better protect natural resources while accommodating growth” (nemonet.uconn.edu). One of the hallmarks of the NEMO programs is the use of geospatial technology, such as geographic information systems and remote sensing, to enhance its educational programs.

Nationally, NEMO has been very successful in helping to mitigate nonpoint source pollution. The goal of NEMO is to educate land-use decision makers to take proactive voluntary actions that will mitigate nonpoint source pollution and protect natural resources. In the eastern United States (where the NEMO concept originated), land use authority is concentrated in municipal (village, town and city) government. In Arizona, where nearly 80% of the land is managed by state, tribal and federal entities, land use authorities include county, state and federal agencies, in addition to municipal officials and private citizens.

In partnership with the Arizona Department of Environmental Quality (ADEQ) and the University of Arizona (U of A) Water Resources Research Center, the Arizona Cooperative Extension at the
U of A has initiated the Arizona NEMO program. Arizona NEMO attempts to adapt the NEMO program to the conditions in the semiarid, western United States, where water supply is limited and many natural resource problems are related to the lack of water, as well as water quality.

Working within a watershed template, Arizona NEMO includes comprehensive and integrated watershed planning support, identification and publication of Best Management Practices (BMP), and education on water conservation and riparian water quality restoration. Arizona NEMO maintains a website, www.ArizonaNEMO.org, that contains these watershed based plans, Best Management Practices fact sheets, Internet Mapping Service (IMS), and other educational materials.
Table of Contents

Section 1 – Colorado-Lower Gila Watershed-based Plan
 1.1 Scope and Purpose of this Document
 1.2 Watershed Information
 - Internet Mapping Service
 - Hydrologic Unit Code (HUC) Number
 1.2.1 Social Features
 - Urban Areas and Population Growth
 - County governments and Councils of Governments
 - Other Water-Related Organizations in the Colorado-Lower Gila Watershed
 - Land Ownership
 - Land Use
 1.2.2 Physical Features
 - Watershed description
 - Climate
 - Topography and Geology
 - Water Resources
 - Soils
 1.2.3 Pollutant Transport
 - Metals
 - Sediment
 - Organics and Nutrients
 - Selenium
 - General Transport Pathways
 1.2.4 Vegetation
 - Southwest regional GAP vegetation cover
 1.2.5 Water quality assessments
 1.3 Natural Resources with Special Protection
 1.3.1 Natural Resource Areas
 1.3.2 Outstanding Waters, Wilderness Areas, and Preserves
 1.3.3 Riparian Areas
 1.3.4 Critical habitats for Threatened and Endangered Species
 1.4 References

Section 2 – Pollutant Risk Ranking
 2.1 Purpose of this Section
 2.2 Methods
 2.2.1 GIS and hydrological modeling
 2.2.2 Fuzzy logic
 2.2.3 Subwatershed classification and Pollutant Risk Groups
 2.2.4 Water quality assessment data
 2.3 Pollutant risk analyses
2.3.1 Metals
- Water Quality Assessment for Metals
- Location of Mining Activities
- Sediment Yield
- Contributions from Urban Areas

2.3.2 Sediment
- Water Quality Assessments for Sediment
- Land ownership - Sediment
- Human Use Index - Sediment
- Soil Loss Modeling

2.3.3 Organics and Nutrients
- Water Quality Assessment for Organics and Nutrients
- Human Use Index – Organics and Nutrients

2.3.4 Selenium
- Water Quality Assessment for Selenium
- Agricultural Lands
- Number of Mines per Watershed

2.4 Summary of Risk Analyses

2.5 References

Section 3 - Watershed Management and Improvements

3.1 Watershed Management

3.1.1 Management Methods
- Site Management on New Developments
- Monitoring and Enforcement Activities
- Water Quality Improvements and Restoration Projects
- Education

3.1.2 – Strategy for addressing existing impairments
- Metals
 - Metals TMDLs
 - Potential Sources
 - Potential BMPs or Other Management Action
 - Education/Training Needs

- Sediment
 - Sediment TMDLs
 - Potential Sources
 - Potential BMPs or Other Management Action
 - Education/Training Needs

- Organics and Nutrients
 - Nutrient TMDLs
 - Potential Sources
 - Potential BMPs or Other Management Action
 - Education/Training Needs

- Selenium
- Selenium TMDLs
- Potential sources
- Potential BMPs or Other Management Action
- Education/Training Needs

3.1.3 Strategy for Channel, Riparian Protection and Restoration
- Education/Training Needs

3.2 Local Watershed Planning

3.2.1 Potential Water Quality Improvement Projects
1. Thirteenmile Wash-Sacramento Wash Subwatershed Example Project
 - Pollutant Type and Source
 - Load Reductions
 - Management Measures

2. Lower Colorado River-Lake Havasu Subwatershed Example Project
 - Pollutant Type and Source
 - Load Reductions

3. Fourth of July Wash-Lower Gila River Subwatershed Example Project
 - Pollutant Type and Source
 - Load Reductions
 - Management Measures

4. Fortuna Wash-Lower Gila River Subwatershed Example Project
 - Pollutant Type and Source
 - Load Reductions
 - Management Measures

3.2.2 Technical and Financial Assistance
3.2.3 Education and Outreach
3.2.4 Implementation Schedules and Milestones
3.2.5 Evaluation Criteria
3.2.6 Effectiveness Monitoring
3.2.7 Conclusions

3.3 Summary of EPA’s 9 key elements
3.3.1 Introduction
3.3.2 Element 1: Causes and Sources
3.3.3 Element 2: Expected Load Reductions
3.3.4 Element 3: Management Measures
3.3.5 Element 4: Technical and Financial Assistance
3.3.6 Element 5: Information/Education Component
3.3.7 Element 6: Schedule
3.3.8 Element 7: Measurable Milestones
3.3.9 Element 8: Evaluation of Progress
3.3.10 Element 9: Effectiveness Monitoring
3.3.11 Conclusions

3.4 References

Appendix A – Soil Classification
Appendix B – Subwatershed Classification for Risk of Impairment, Colorado/Lower Gila Watershed.
Appendix C – Automated Geospatial Watershed Assessment Tool – AGWA
Appendix D – Suggested Reading
1. General References
2. Archeological and Ethnology
3. History
4. Ecology
5. Geology
6. Statewide Geophysics
7. Groundwater
8. Surface Water Hydrology and Sediment
List of Figures

Figure 1-1 10-Digit HUC Boundaries
Figure 1-2 Watershed Reference Map
Figure 1-3 Land Ownership
Figure 1-4 Land Use
Figure 1-5 Slope
Figure 1-6 Major Lakes and Streams
Figure 1-7 Soils
Figure 1-8 Vegetation Groups
Figure 1-9 Assessed Lakes and Streams
Figure 1-10 Natural Resource Areas and Outstanding Waters
Figure 1-11 Critical Habitat
Figure 2-1 Methods Diagram
Figure 2-2 Mines
Figure 2-3 Mines within Riparian Areas
Figure 2-4 Sediment Yield
Figure 2-5 Results of Metals Risk Analysis
Figure 2-6 Land Ownership – State Land and Private Land
Figure 2-7 Human Use Index Categories
Figure 2-8 Human Use Index within Riparian Area
Figure 2-9 Water Yield
Figure 2-10 Results of Sediment Risk Analysis
Figure 2-11 Human Use Index Categories
Figure 2-12 Human Use Index within Riparian Area
Figure 2-13 Land Ownership – State Land and Private Land
Figure 2-14 Results of Nutrients and Organics Risk Analysis
Figure 2-15 Agricultural Lands
Figure 2-16 Results of Selenium Risk Analysis
Figure 3-1: Reclaimed Mine Site
Figure 3-2: Rock Rip-Rap Sediment Control
Figure 3-3: Rock Structure for Runoff Control
Figure 3-4: Filter strip near waterbody
Figure 3-5: Alternative cattle watering facilities
Figure 3-6: Rock Riprap and Jute Matting
Figure 3-7: Bank Stabilization and Erosion Control along a highway
Figure 3-8: Filter strip near waterbody
Figure D-1: Flow chart showing the general framework for using KINEROS2 and SWAT in AGWA.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1</td>
<td>Colorado-Lower Gila Watershed 10-Digit HUCs and Subwatershed Areas</td>
</tr>
<tr>
<td>Table 1-2</td>
<td>Colorado-Lower Gila Watershed Land Ownership (Area in Square Miles)</td>
</tr>
<tr>
<td>Table 1-3</td>
<td>Colorado-Lower Gila Watershed Major Lakes and Streams</td>
</tr>
<tr>
<td>Table 2-1</td>
<td>Risk Evaluation (RE) Scoring Method</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) Assigned to Each 10-Digit HUC Subwatershed, Based on Water Quality Assessment (WQA) Results for Metals</td>
</tr>
<tr>
<td>Table 2-3</td>
<td>Colorado-Lower Gila Risk Evaluations (RV) for Each Subwatershed Based on the Number and Location of Mines</td>
</tr>
<tr>
<td>Table 2-4</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations and Erosion Categories</td>
</tr>
<tr>
<td>Table 2-5</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) for Urbanized Areas</td>
</tr>
<tr>
<td>Table 2-6</td>
<td>Colorado-Lower Gila Watershed Summary Results for Metals Based on Risk Evaluations (RE) – Weighted Combination Approach</td>
</tr>
<tr>
<td>Table 2-7</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) Assigned to Each 10-Digit HUC Subwatershed, based on Water Quality Assessment Results for Sediment</td>
</tr>
<tr>
<td>Table 2-8</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) for Sediment Based on Land Ownership</td>
</tr>
<tr>
<td>Table 2-9</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) for Sediment Based on Human Use Index (HUI)</td>
</tr>
<tr>
<td>Table 2-10</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) and Runoff Categories</td>
</tr>
<tr>
<td>Table 2-11</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) and Erosion categories</td>
</tr>
<tr>
<td>Table 2-12</td>
<td>Colorado-Lower Gila Watershed Summary Results for Sediment Based on Risk Evaluations (RE) – Weighted Combination Approach</td>
</tr>
<tr>
<td>Table 2-13</td>
<td>Colorado-Lower Gila Watershed Risk Evaluation (RE) for Organics Assigned to Each 10-Digit HUC Subwatershed, Based on Water Quality Assessment Results</td>
</tr>
<tr>
<td>Table 2-14</td>
<td>Colorado-Lower Gila Watershed Risk Evaluation (RE) For Organics Based on the Human Use Index</td>
</tr>
<tr>
<td>Table 2-15</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) for Urbanized Areas for Organics</td>
</tr>
<tr>
<td>Table 2-16</td>
<td>Colorado-Lower Gila Watershed Summary Results for Organics Based on the Risk Evaluation (RE)-Weighted Combination Approach</td>
</tr>
<tr>
<td>Table 2-17</td>
<td>Colorado-Lower Gila Watershed Risk Evaluation (RE) Assigned to Each 10-Digit HUC Subwatershed, based on Water Quality Assessment Results for Selenium</td>
</tr>
<tr>
<td>Table 2-18</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) for Percentage of Agriculture Land in Each Subwatershed</td>
</tr>
<tr>
<td>Table 2-19</td>
<td>Colorado-Lower Gila Watershed Risk Evaluations (RE) for Selenium, for Each 10-Digit HUC Subwatershed Based on Number of Mines</td>
</tr>
<tr>
<td>Table 2-20</td>
<td>Colorado-Lower Gila Watershed Summary Results for Selenium Based on the Risk Evaluations (RE)- Weighted Combination Approach</td>
</tr>
<tr>
<td>Table 2-21</td>
<td>Colorado-Lower Gila Watershed Summary of Ranking and Risk</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>Proposed Treatments for Addressing Metals from Abandoned Mines</td>
</tr>
</tbody>
</table>
Table 3-2 Proposed Treatments for Addressing Erosion and Sedimentation
Table 3-3 Proposed Treatments for Addressing Organics and Nutrients
Table 3-4A Example Watershed Project Planning Schedule
Table 3-4B Example Project Schedule