Section 1: Introduction

Background: Nonpoint Source Pollution and NEMO

The Southwestern United States, including the state of Arizona, is the fastest growing region in the country. Because the region is undergoing rapid development, there is a need to address health and quality of life issues that result from degradation of our water resources.

Water quality problems may originate from both “point” and “nonpoint” sources. The Clean Water Act (CWA) defines “point source” pollution as “any discernable, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft from which pollutants are or may be discharged” (33 U.S.C. § 1362(14)). Point source discharge is regulated through provisions in the CWA.

Although nonpoint source pollution is not defined under the CWA, it is widely understood to be the type of pollution that arises from many dispersed activities over large areas, and is not traceable to any single discrete source. Nonpoint source pollution may originate from many different sources, usually associated with rainfall runoff moving over and through the ground, carrying natural and manmade pollutants into lakes, rivers, streams, wetlands and ground water. In contrast to point source pollution, nonpoint source pollution is addressed primarily through non-regulatory means under the CWA. Nonpoint source pollution is the leading cause of water quality degradation across the United States, and is the water quality issue that NEMO, the Nonpoint Education for Municipal Officials program, and this watershed based plan will address.

Nationally, NEMO has been very successful in helping to mitigate nonpoint source pollution. The goal of NEMO is to educate land-use decision makers to take proactive voluntary actions that will mitigate nonpoint source pollution and protect natural resources. In the eastern United States (where the NEMO concept originated), land use authority is concentrated in municipal (village, town and city) government. In Arizona, where nearly 80% of the land is managed by state, tribal and federal entities, land use authorities include county, state and federal agencies, in addition to municipal officials and private citizens.

In partnership with the Arizona Department of Environmental Quality (ADEQ) and the University of Arizona (U of A) Water Resources Research Center, the Arizona Cooperative Extension at the U of A has initiated the Arizona NEMO program. Arizona NEMO attempts to adapt the NEMO program to the conditions in the semiarid, western United States, where water supply is limited and many natural resource problems are related to the lack of water, as well as water quality.

Working within a watershed template, Arizona NEMO includes: comprehensive and integrated watershed planning support,
identification and publication of Best Management Practices (BMP), and education on water conservation and riparian water quality restoration.

Watershed Based Plans

Watershed-based plans are holistic documents designed to protect and restore a watershed. These plans provide a careful analysis of the sources of water quality problems, their relative contributions to the problems, and alternatives to solve those problems. Furthermore, watershed-based plans present proactive measures that can be applied to protect water bodies. In watersheds with developed or drafted Total Maximum Daily Load (TMDL) studies for specific waterbodies, the watershed-based plan must be designed to achieve the load reductions identified in the TMDL.

The CWA requires each state to perform a TMDL on waterbodies that are identified as impaired due to exceedances of state surface water quality standards. As point sources and nonpoint sources of pollution are determined through TMDL analysis, subsequent load reductions are assigned to each source as necessary for the purposes of improving water quality to meet state standards.

In collaboration with the local watershed partnerships and ADEQ, NEMO will help improve water quality by developing a realistic watershed-based plan to achieve water quality standards and protection goals. This plan will identify:

- Areas that are susceptible to water quality problems and pollution;
- Sources that need to be controlled; and
- Management measures that should be implemented to protect or improve water quality.

The first component of the planning process is to characterize the watershed by summarizing all readily available natural resource information and other data for that watershed. As seen in Sections 2 though 5 of this document, these data are at a broad-based, large watershed scale and include information on water quality, land use and cover, natural resources and wildlife habitat.

It is anticipated that stakeholder-groups will develop their own detailed planning documents. That document may cover a subwatershed area within the NEMO Watershed-based Plan, or include the entire watershed area. In addition, stakeholder-group local watershed-based plans will incorporate local knowledge and concerns gleaned from stakeholder involvement and will include:

- A description of the stakeholder / partnership process;
- A well-stated, overarching goal aimed at protecting, preserving, and restoring habitat and water
quality, and encouragement of land stewardship;

- A plan to coordinate natural resource protection and planning efforts;

- A detailed and prioritized description of natural resource management objectives; and

- A detailed and prioritized discussion of best management practices, strategies and projects to be implemented by the partnership.

Based on EPA’s 2003 Guidelines for the Award of Section 319 Nonpoint Source Grants, a watershed-based plan should include all nine of the elements listed below. This NEMO watershed-based plan addresses each of these elements (except for Element 2: Expected Load Reductions); however, the watershed group must determine the final watershed plan and actions.

- Element 1: Causes and Sources - Clearly define the causes and sources of impairment (physical, chemical, and biological).

- Element 2: Expected Load Reductions - An estimate of the load reductions expected for each of the management measures or best management practices to be implemented (recognizing the natural variability and the difficulty in precisely predicting the performance of management measures over time).

- Element 3: Management Measures - A description of the management measures or best management practices and associated costs that will need to be implemented to achieve the load reductions estimated in this plan and an identification (using a map or a description) of the critical areas where those measures are needed.

- Element 4: Technical and Financial Assistance - An estimate of the amounts of technical and financial assistance needed, associated costs, and/or the sources and authorities that will be relied upon, to implement this plan.

- Element 5: Information / Education Component - An information/education component that will be used to enhance public understanding of the project and encourage their early and continued participation in selecting, designing, and implementing management measures.

- Element 6: Schedule - A schedule for implementing management measures identified in this plan that is reasonably expeditious.

- Element 7: Measurable Milestones - A schedule of interim, measurable milestones for determining whether the management measures, Best Management Practices, or other control actions are being implemented.

- Element 8: Evaluation of Progress - A set of criteria that can be used to
determine whether loading reductions are being achieved over time and substantial progress is being made towards attaining water quality standards and, if not, the criteria for determining whether the plan needs to be revised or, if a Total Maximum Daily Load (TMDL) has been established, whether the TMDL needs to be revised.

- Element 9: Effectiveness Monitoring - A monitoring component to evaluate the effectiveness of the implementation efforts over time, measured against the criteria established in the Evaluation of Progress element.

These nine elements help provide reasonable assurance that the nonpoint source of pollution will be managed to improve and protect water quality and to assure that public funds to address impaired waters are used effectively.

Purpose and Scope

This watershed-based plan includes a watershed characterization and a watershed classification for the Little Colorado Watershed.

The Little Colorado Watershed is located in the northeast portion of the state of Arizona, east of the city of Flagstaff, as shown in Figure 1-1.

The watershed characterization in Sections 2 through 5 includes physical, biological, and social/economic data in a geographic information system (GIS) database format, as both mapped and tabulated data, that has been collected from available existing and published data sources. No new field data were collected for this plan. This characterization represents an inventory of natural resources and environmental conditions that affect primarily surface water quality. It provides educational outreach material to stakeholders and watershed partnerships.

The watershed classification identifies water quality problems by incorporating water quality data reported in The Status of Water Quality in Arizona - 2004: Arizona’s Integrated 305(b) Assessment and 303(d) Listing Report (ADEQ, 2005), ADEQ’s biennial report consolidating water quality reporting requirements under the federal Clean Water Act. The ADEQ water quality data, TMDL definitions, and further information for each stream reach and the surface water sampling sites across the state can be found at: www.adeq.state.az.us/environ/water/assessment/assess.html.

The watershed classification includes identifying and mapping important resources, and ranking 10-digit HUC (hydrologic unit codes) subwatersheds (discussed later in this section) based on the likelihood of nonpoint source pollutant contribution to stream water quality degradation.

In addition to the watershed characterization and classification, this plan includes general discussions of recommended nonpoint source Best Management Practices (BMP) that may be implemented to achieve pollutant load reductions and other watershed goals. It provides methods and tools to identify problem sources and locations.
for implementation of BMPs to mitigate nonpoint source pollution.

These watershed management activities are proposed with the understanding that the land-use decision makers and stakeholders within the watershed can select the BMPs they feel are most appropriate and revise management activities as conditions within the watershed change. Although these chapters are written based on current information, the tools developed can be used to update this plan and reevaluate water quality concerns as new information becomes available.
Figure 1-1: Little Colorado Watershed Location Map.
Methods

GIS and Hydrologic modeling

GIS and hydrologic modeling were the major tools used to develop this watershed-based plan. In a GIS, two types of information represent geographic features: locational and descriptive data. Locational (spatial) data are stored using a vector (line) or a raster (grid) data structure. Vector data are object based data models which show spatial features as points, lines, and/or polygons. Raster data models represent geographical space by dividing it into a series of units or cells, each of which is limited and defined by an equal amount of the earth’s surface. These cells may be triangular or hexagonal, although the square is the most common. Corresponding descriptive (attribute) data for each geographic feature are stored in a set of tables. The spatial and descriptive data are linked in the GIS so that both sets of information are always available.

Planning and assessment in land and water resource management requires spatial modeling tools to incorporate complex watershed-scale attributes into the assessment process. Modeling tools applied to the Little Colorado Watershed include AGWA, SWAT and RUSLE, as described below.

The Automated Geospatial Watershed Assessment Tool (AGWA) is a GIS-based hydrologic modeling tool designed to evaluate the effects of land use change (Burns et al., 2004). AGWA provides the functionality to conduct all phases of a watershed assessment. It facilitates the use of the Soil and Water Assessment Tool (SWAT), a hydrologic model, by preparing the inputs, running the model, and presenting the results visually in the GIS. AGWA has been used to illustrate the impacts of urbanization and other landscape changes on runoff and sediment load in a watershed.

AGWA was developed under a joint project between the Environmental Protection Agency (EPA), Agricultural Research Service (ARS), and the University of Arizona. SWAT was developed by the ARS, and is able to predict the impacts of land management practices on water, sediment and chemical yields in complex watersheds with varying soils, land use and management conditions (Arnold et al., 1994).

The SEDMOD model (Van Remortel et al., 2004), which uses the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997), was applied in this plan to estimate soil erosion and sediment delivery from different land use types. This procedure involves a series of automated Arc Macro Language (AML) scripts and two supported programs that run in an ESRI ArcGIS 8.x Workstation platform.

The watershed classification within this plan incorporates GIS-based hydrologic modeling results and other data to describe watershed conditions upstream from an impaired stream reach identified within Arizona’s Integrated 305(b) Assessment and 303(d) Listing Report (ADEQ, 2005). In addition, impacts due to mine sites (erosion and metals pollution) and grazing (erosion and pollutant nutrients) are analyzed using fuzzy logic (described below).
The Little Colorado Watershed is defined and mapped by the U.S. Geological Survey using the six-digit Hydrologic Unit Code (HUC). The United States is divided and subdivided into successively smaller hydrologic units of surface water drainage features, which are classified into four levels, each identified by a unique hydrologic unit code consisting of two to eight digits: regions (2 digit), sub-regions (4 digit), accounting units (6 digit), and cataloging units (8 digit) (Seaber et al., 1987).

The Little Colorado is a six-digit HUC watershed, and within it smaller subwatershed areas are delineated using both the eight and ten digit cataloging HUC. Eight-digit HUCs were used for the characterizations while classifications and GIS modeling were done at the 10-digit level.

The following HUC units (and subwatershed names are used to clarify locations in this plan.

15020001 Little Colorado River Headwaters
- 1502000101-Nutrioso Creek
- 1502000102-South Fork Little Colorado River-Little Colorado River Headwaters
- 1502000103-Coyote Creek
- 1502000104-Carnero Creek-Little Colorado River Headwaters

15020002 Upper Little Colorado River
- 1502000201-Upper Little Colorado River, Lyman Lake to Big Hollow Wash
- 1502000202-Big Hollow Wash
- 1502000203-Concho Creek-Upper Little Colorado River
- 1502000204-Oso Draw

15020003 Carrizo Wash
- 1502000306-Middle Carrizo Wash
- 1502000307-Lower Carrizo Wash

15020004 Zuni River
- 1502000406-Jaralosa Draw
- 1502000407-Middle Zuni River
- 1502000408-Hardscrabble Wash
- 1502000409-Lower Zuni River

15020005 Silver Creek
- 1502000501-Show Low Creek
- 1502000502-Upper Silver Creek
- 1502000503-Cottonwood Creek
- 1502000504-Lower Silver Creek

15020006 Upper Puerco River
- 1502000603-Upper Black Creek
- 1502000605-Whitewater Arroyo
- 1502000606-Lower Black Creek
- 1502000607-Manuelito Canyon-Upper Puerco River

15020007 Lower Puerco River
- 1502000701-Burntwater Wash-Lower Puerco River
- 1502000702-Morgan Canyon
- 1502000703-Dead Wash
- 1502000704-Dry Wash
- 1502000705-Ninemile Wash-Lower Puerco River

15020008 Middle Little Colorado River
- 1502000801-Phoenix Park Wash-Dry Lake
- 1502000802-Porter Tank Draw-Middle Little Colorado River
- 1502000803-Upper Clear Creek
Section 1: Introduction

Little Colorado River Watershed

1502000804-Lower Clear Creek
1502000805-Jacks Canyon
1502000806-McDonald Canyon-Middle Little Colorado River
1502000807-Rincon Basin Area-Middle Little Colorado River
1502000808-Coyote Wash-Middle Little Colorado River
1502000809-Cow Canyon-Middle Little Colorado River
1502000810-Middle Little Colorado River-Canyon Diablo to Grand Falls

15020009 Wide Ruin Wash-Leroux Wash
1502000901-Upper Wide Ruin Wash
1502000902-Lower Wide Ruin Wash
1502000903-Leroux Wash

15020010 Chevelon Canyon
1502001001-Upper Chevelon Canyon
1502001002-Black Canyon
1502001003-Lower Chevelon Canyon

15020011 Pueblo Colorado Wash-Cottonwood Wash
1502001101-Upper Pueblo Colorado Wash
1502001102-Steamboat Wash
1502001103-Middle Pueblo Colorado Wash
1502001104-Bidahochi Wash
1502001105-Lower Pueblo Colorado Wash
1502001106-Cottonwood Wash

15020012 Oraibi Wash
1502001201-Upper Oraibi Wash
1502001202-Middle Oraibi Wash
1502001203-Lower Oraibi Wash

15020013 Polacca Wash
1502001301-Upper Polacca Wash
1502001302-Wepo Wash
1502001303-Middle Polacca Wash
1502001304-Lower Polacca Wash

15020014 Jadito Wash
1502001401-Ha-whi-yalin Wash
1502001402-Upper Jadito Wash
1502001403-Coyote Wash
1502001404-Lower Jadito Wash

15020015 Canyon Diablo
1502001501-Rio de Flag
1502001502-Walnut Creek
1502001503-San Francisco Wash
1502001504-Canyon Diablo (Local Drainage)

15020016 Lower Little Colorado River
1502001601-Kana-a Wash-Lower Little Colorado River
1502001602-Deadman Wash
1502001603-Big Wash-The Big Lake Area
1502001604-Tohachi Wash
1502001605-Citadel Wash-Lower Little Colorado River
1502001606-Lower Cedar Wash
1502001608-Tonahakaad Wash-Lower Little Colorado River
1502001609-Lee Canyon-Lower Little Colorado River
1502001610-Sheep Wash-Lower Little Colorado River

15020017 Dinnebito Wash
1502001701-Upper Dinnebito Wash
1502001702-Middle Dinnebito Wash
1502001703-Lower Dinnebito Wash

15020018 Moenkopi Wash
1502001801-Moenkopi Wash Headwaters
1502001802-Shonto Wash
1502001803-Upper Begashibito Wash
1502001804-Crooked Ridge/Echo Cliffs Area
1502001805-Lower Begashibito Wash
Fuzzy Logic

To rank the 10-digit HUC subwatershed areas that are susceptible to water quality problems and pollution, and to identify sources that need to be controlled, a fuzzy logic knowledge-based methodology was applied to integrate the various spatial and non-spatial data types (Guertin et al., 2000; Miller et al., 2002; Reynolds et al., 2001). This methodology has been selected as the basis by which subwatershed areas and stream reaches are prioritized for the implementation of BMPs to assure nonpoint source pollution is managed.

Fuzzy logic is an approach to set theory that handles vagueness or uncertainty, and has been described as a method by which to quantify common sense. In classical set theory, an object is either a member of the set or excluded from the set. Fuzzy logic allows for an object to be a partial member of a set.

For example, classical set theory might place a man into either the tall or short class, with the class of tall men being those over the height of 6’0””. Using this method, a man who is 5’ 11” tall would not be placed in the tall class, although he would not be considered ‘not-tall’. This is unacceptable, for example, for describing or quantifying an object that may be a partial member of a set. In fuzzy logic, membership in a set is described as a value between 0 (non-membership in the set) and 1 (full membership in the set). For instance, the individual who is 5’ 11” is not classified as short or tall, but is classified as tall to a degree of 0.8. Likewise, an individual of height 5’ 10” would be tall to a degree of 0.6.

In fuzzy logic, the range in values between different data factors are converted to the same scale (0-1) using fuzzy membership functions. Fuzzy membership functions can be discrete or continuous depending on the characteristics of the input. In the illustration above, the degree of tallness was iteratively added in intervals of 0.2, creating a discrete data set. A continuous data set would graph the heights of all individuals and correlate a continuous fuzzy member value to that graph. A user defines their membership functions to describe the relationship between an individual factor and the achievement of the stated goal.

A benefit of using a fuzzy membership function is that it can be based on published data, expert opinions, stakeholder values or institutional policy, and can be created in a data-poor environment. Another benefit is that it provides for the use of different methods for combining individual factors to create the final classification, and the goal set. Fuzzy membership functions and weighting schemes can also be changed based on watershed concerns and conditions.
The general approach used in this plan was to integrate watershed characteristics, water quality measurements, and modeling results within a multi-parameter ranking system based on the fuzzy logic knowledge-based approach, as shown schematically in Figure 1-2.

This approach requires that a goal be defined according to the desired outcome and that the classification be defined as a function of the goal and is therefore reflective of the management objective. For this watershed classification, the goal is to identify critical subwatersheds in which BMPs should be implemented to reduce nonpoint source pollution.

The classification process was implemented within a GIS interface to create the subwatershed classifications using five primary steps:

- Define the goal of this watershed classification: Classify water quality impairment due to dissolved total metals from mining activity;
- Assemble GIS data and other observational data;
- Define watershed characteristics through:
 1. Water quality data provided in Arizona’s Integrated 305(b) Assessment and 303(d) Listing Report (ADEQ, 2005);
 2. GIS mapping analysis; and
 3. Modeling and simulation of erosion vulnerability and potential for stream impairment (i.e. from soils at mine sites and proximity to abandoned mine sites);
- Use fuzzy membership functions to transform the vulnerability and impairment metrics into fuzzy membership values; and
- Determine a composite fuzzy score representing the ranking of the combined attributes for each subwatershed, and interpret the results.
Arizona's Integrated 305(b) Assessment and 303(d) Listing Report (ADEQ, 2005), was used to classify each monitored stream reach based on its relative risk of impairment for each of the chemical constituent groups. The constituent groups include metals, organics, nutrients, and turbidity/sediment. Two final levels of risk were defined: high and low. For example, if elevated concentrations of metals, such as copper and mercury, are found above standards, the water body would be classified as “high” risk if ADEQ has currently assessed it as being “impaired” for that constituent group. Conversely, a water body is classified as “low” risk if there are no exceedances in a constituent group and there are sufficient data to make a classification.

Classifications were conducted at the 8-digit HUC subwatershed scale, for the Little Colorado Watershed, resulting in the ranking of the subwatershed areas.

Structure of this Plan

Watershed characterizations, including physical, biological, and social characteristics, are discussed in Sections 2 through 4. Important environmental resources are discussed in Section 5. These sections will address the entire Little Colorado Watershed (all 18 8-digit HUCs).

The subwatershed classifications based on water quality attributes including concentrations of metals, sediment/turbidity, organics, and nutrients are found in Section 6. Watershed management strategies and
BMPs are provided in Section 7, the Watershed Plan is presented in Section 8, and a summary of EPA’s 9 Key Elements is provided in Section 9. The full tabulation of the ADEQ water quality data and assessment status is provided in Appendix A. Suggested technical references of studies completed across the Little Colorado Watershed are included in Appendix B, a description of RUSLE is in Appendix C, and a description of AGWA is in Appendix D.

References

