NEMO Watershed Based Plan
Middle and Lower San Pedro Watershed
Acknowledgements

Arizona NEMO acknowledges the University of Arizona Cooperative Extension Service, Arizona Department of Environmental Quality (ADEQ) Water Quality Division, the Water Resources Research Center, and the University of Arizona Advanced Resource Technology Lab (ART) for their technical support in producing the Watershed Based Plans.

Funding provided by the U.S. Environmental Protection Agency under the Clean Water Act and the Arizona Department of Environmental Quality's Water Quality Protection Division. Additional financial support is provided by the University of Arizona, Technology and Research Initiative Fund (TRIF), Water Sustainability Program through the Water Resources Research Center.

The NEMO website is www.ArizonaNEMO.org.

Written and prepared by:
Lainie R. Levick, Mickey Reed, Elisabeth vanderLeeuw, D. Phillip Guertin and Kristine Uhlman
University of Arizona
Tucson, Arizona
October 2006
Table of Contents

Section 1: Introduction
 Background: Nonpoint Source Pollution and NEMO
 Watershed Based Plans
 Purpose and Scope
 Methods
 GIS and Hydrologic Modeling
 Fuzzy Logic
 Structure of this Plan
 References

Section 2: Physical Features
 Watershed Size
 Topography
 Water Resources
 Lakes and Reservoirs
 Stream Types
 Stream Density
 Annual Stream Flow
 Water Quality
 Geology
 Alluvial Valley Fill Deposits of the San Pedro Watershed
 Ground Water Resources
 Soils
 Climate
 Precipitation
 Temperature
 References
 Data Sources

Section 3: Biological Resources
 Ecoregions
 Vegetation
 Habitats (Riparian and Wetland Areas)
 Major Land Resource Areas (MLRAs)
 References
 Data Sources

Section 4: Social / Economic Characteristics
 County Governments
 Council of Governments (COGs)
 Urban Areas
 Population
 Census Population Densities in 1990
 Census Population Densities in 2000
Population Change
Roads
Mines
Land Use
Land Ownership
Special Areas
 Preserves
 Wilderness and Riparian National Conservation Areas
 Golf Courses
References
Data Sources

Section 5: Important Natural Resources
 Aravaipa – Alder Creek NRA
 Paige Creek NRA
References

Section 6: Watershed Classification
Methods
 GIS and Hydrologic Modeling
 Fuzzy Logic
 Subwatershed Classification
 Water Quality Assessment Data
Metals
 Water Quality Assessment Data - Metals
 Location of Mining Activities
 Potential Contribution of Mines to Sediment Yield
 SEDMOD/RUSLE Modeling
 Metals Results
Sediment
 Water Quality Assessment Data - Sediment
 Land ownership - Sediment
 Human Use Index – Sediment
 AGWA/SWAT Modeling
 Runoff
 Erosion and Sediment Yield
 Sediment Results
Organics
 Water Quality Assessment Data - Organics
 Human Use Index - Organics
 Land Use - Organics
 Nutrients
 pH
 Organics Results
Selenium
 Water Quality Assessment Data - Selenium
Section 7: Watershed Management

Management Methods
- Site Management on New Development
- Monitoring and Enforcement Activities
- Water Quality Improvement and Restoration Projects
- Education

Strategy for Addressing Existing Impairment

Metals
- Inventory of Existing Abandoned Mines
- Revegetation
- Erosion Control
- Runoff and Sediment Capture
- Removal
- Education

Sediment
- Grazing Management
- Filter Strips
- Fencing
- Watering Facilities
- Rock Riprap
- Erosion Control Fabric
- Toe Rock
- Water Bars
- Erosion Control on Dirt Roads
- Channel and Riparian Restoration
- Education

Organics
- Filter Strips
- Fencing
- Watering Facilities
- Septic System Repair
- Education

Selenium
- Education

Strategy for Channel and Riparian Protection and Restoration
- Education Programs
- Education Needs
- Target Audiences

References

Data Sources
Section 8: Local Watershed Planning
Potential Water Quality Improvement Projects
 Upper Aravaipa Creek Subwatershed
 Redfield Canyon - Lower San Pedro Subwatershed
 Dodson Wash - Lower San Pedro River Subwatershed
 Tucson Wash - Lower San Pedro River Subwatershed

Technical and Financial Assistance
Education and Outreach
Implementation Schedules and Milestones
Evaluation
Monitoring
Conclusions
References

Section 9: Summary of EPA’s 9 Key Elements for Section 319 Funding
Introduction
Element 1: Causes and Sources.
Element 2: Expected Load Reductions.
Element 3: Management Measures.
Element 4: Technical and Financial Assistance.
Element 5: Information / Education Component.
Element 6: Schedule.
Element 7: Measurable Milestones.
Element 8: Evaluation of Progress.
Element 9: Effectiveness Monitoring.
Conclusions

Appendices
Appendix A. Water Quality Data and Assessment Status
Appendix B. Suggested Readings
Appendix C: Revised Universal Soil Loss Equation (RUSLE) Modeling
Appendix D: Automated Geospatial Watershed Assessment Tool - AGWA
List of Figures

1-1: Middle and Lower San Pedro Watershed Location Map.
1-2: Transformation of Input Data via a GIS, Fuzzy Logic Approach, and Synthesis of Results into a Watershed Classification.

2-1: Middle and Lower San Pedro Watershed Location.
2-2: Middle and Lower San Pedro Watershed Subwatershed Names and HUCs.
2-3: Middle and Lower San Pedro Watershed Topography.
2-4: Middle and Lower San Pedro Watershed Slope Classes.
2-5: Middle and Lower San Pedro Watershed Stream Types.
2-6: Middle and Lower San Pedro Watershed Major Lakes and Streams.
2-7: Middle and Lower San Pedro Watershed Stream Density.
2-8: Middle and Lower San Pedro Watershed USGS Stream Gages.
2-10: San Pedro River at Winkelman USGS Gage 09473500, Five Year Moving Average Annual Streamflow (cfs) Hydrograph.
2-11: Aravaipa Creek near Mammoth USGS Gage 09473000, Mean Daily Stream Flow (cfs) Hydrograph.
2-12: Aravaipa Creek near Mammoth USGS Gage 09473000, Five Year Moving Average Annual Stream Flow (cfs) Hydrograph.
2-14: San Pedro River near Redington USGS Gage 09472000, Five Year Moving Average Annual Streamflow (cfs) Hydrograph.
2-16: San Pedro River near Tombstone USGS Gage 09471550, Five Year Moving Average Annual Streamflow (cfs) Hydrograph.
2-17: Middle and Lower San Pedro Watershed 303d Streams and Lakes.
2-18: Middle and Lower San Pedro Watershed Geology.
2-19: Middle and Lower San Pedro Watershed Alluvial Geology.
2-20: Middle and Lower San Pedro Watershed Arizona Department of Water Resources (ADWR) Ground Water Basins
2-21: Middle and Lower San Pedro Watershed U.S. Geological Survey (USGS) Ground Water Basins
2-22: Middle and Lower San Pedro Watershed Soil Texture.
2-23: Middle and Lower San Pedro Watershed Soil Erodibility Factor.
2-24: Middle and Lower San Pedro Watershed Average Annual Precipitation (inches/year).
2-25: Middle and Lower San Pedro Watershed Average Annual Temperature (°F).
2-26: Middle and Lower San Pedro Watershed Weather Stations.

3-1: Middle and Lower San Pedro Watershed Ecoregions – Divisions.
3-2: Middle and Lower San Pedro Watershed Ecoregions – Provinces.
3-3: Middle and Lower San Pedro Watershed Ecoregions – Sections.
3-4: Middle and Lower San Pedro Watershed Brown, Lowe and Pace Biotic Communities.
3-5: Middle and Lower San Pedro Watershed Southwest Regional GAP Analysis Project Land Cover.
3-6: Middle and Lower San Pedro Watershed Arizona Game & Fish Department Vegetation Classes.
3-7: Middle and Lower San Pedro Watershed Riparian and Wetland Areas.
3-8: Middle and Lower San Pedro Watershed Major Land Resources Areas.

4-1: Middle and Lower San Pedro Watershed Counties.
4-2: Middle and Lower San Pedro Watershed Council of Governments.
4-3: Middle and Lower San Pedro Watershed Urbanized Areas.
4-4: Middle and Lower San Pedro Watershed 2000 Population Density Greater than 1,000 persons/square mile.
4-6: Middle and Lower San Pedro Watershed 2000 Population Density, persons/square mile.
4-8: Middle and Lower San Pedro Watershed Road Types.
4-9: Middle and Lower San Pedro Watershed Mine Types.
4-10: Middle and Lower San Pedro Watershed Mines - Status.
4-11: Middle and Lower San Pedro Watershed Mines - Primary Ore.
4-12: Middle and Lower San Pedro Watershed Land Cover.
4-13: Middle and Lower San Pedro Watershed Land Ownership.
4-14: Middle and Lower San Pedro Watershed Arizona Preserve Initiative Areas.
4-15: Middle and Lower San Pedro Watershed Wilderness and Riparian National Conservation Areas.
4-16: Middle and Lower San Pedro Watershed Golf Courses.

5-1: Natural Resource Areas in the Middle and Lower San Pedro Watershed.

6-1: Transformation of Input Data via a GIS, Fuzzy Logic Approach, and Synthesis of Results into a Watershed Classification.
6-2: RUSLE Soil Loss “A” (Kg/ha/yr) by Subwatershed.
6-3: Results for the Fuzzy Logic Classification for Metals, Based on the Weighted Combination Approach.
6-4: Results for the Fuzzy Logic Classification for Sediment Based on the Weighted Combination Approach.
6-5: Results for the Fuzzy Logic Classification for Organics, Based on the Weighted Combination Approach.
6-6: Results for the Fuzzy Logic Classification for Selenium Based on the Weighted Combination Approach.
7-1: Middle and Lower San Pedro Land Ownership by Subwatershed.

List of Tables

2-1: Middle and Lower San Pedro Watershed HUCs and Subwatershed Areas.
2-2: Middle and Lower San Pedro Watershed Elevation Range.
2-3: Middle and Lower San Pedro Watershed Slope Classes.
2-4: Middle and Lower San Pedro Watershed Major Waterbodies.
2-5: Middle and Lower San Pedro Watershed Stream Types and Length.
2-6: Middle and Lower San Pedro Watershed Major Streams and Lengths.
2-7: Middle and Lower San Pedro Watershed Stream Density.
2-8: Middle and Lower San Pedro Watershed USGS Stream Gages and Annual Mean Stream Flow.
2-9: Middle and Lower San Pedro Watershed Geology.
2-10: Middle and Lower San Pedro Watershed Rock Types, percent by Subwatershed.
2-11: Middle and Lower San Pedro Watershed Soil Texture - Percent by Subwatershed.
2-12: Middle and Lower San Pedro Watershed Soil Erodibility Factor (K).
2-13: Middle and Lower San Pedro Watershed Average Annual Precipitation (in/yr).
2-14: Middle and Lower San Pedro Watershed Average Annual Temperature (°F).
2-15: Summary of Temperature Data for 8 Temperature Gages in the Middle and Lower San Pedro Watershed.

3-1: Middle and Lower San Pedro Watershed Ecoregions – Divisions.
3-2: Middle and Lower San Pedro Watershed Ecoregions – Provinces.
3-3: Middle and Lower San Pedro Watershed Ecoregions – Sections.
3-4: Middle and Lower San Pedro Watershed Brown, Lowe and Pace Biotic Communities, percent by Subwatershed.
3-5: Middle and Lower San Pedro Watershed Southwest Regional GAP Analysis Project Land Cover, Percent by Subwatershed.
3-6: Middle and Lower San Pedro Watershed Riparian and Wetland Areas (acres) by Subwatershed.
3-7: Middle and Lower San Pedro Watershed Major Land Resource Areas.

4-1: Middle and Lower San Pedro Watershed Percent of Subwatershed by County.
4-2: Middle and Lower San Pedro Watershed Councils of Governments, Percent by Subwatershed.
4-3: Middle and Lower San Pedro Watershed Urbanized Areas (acres).
4-4: Middle and Lower San Pedro Watershed Urban Areas Based on 2000 Population Density (1,000 persons/square mile).
4-5: Middle and Lower San Pedro Watershed 1990 Population Density (persons/square mile).
4-6: Middle and Lower San Pedro Watershed 2000 Population Density (persons/square mile).
4-8: Middle and Lower San Pedro Watershed Road Types.
4-9: Middle and Lower San Pedro Watershed Road Types and Lengths by Subwatershed.
4-10: Middle and Lower San Pedro Watershed Mine Types.
4-11: Middle and Lower San Pedro Watershed Mines - Status.
4-12: Middle and Lower San Pedro Watershed Mines - Ore Type.
4-13: Middle and Lower San Pedro Watershed Land Cover.
4-14: Middle and Lower San Pedro Watershed Land Ownership (Percent of each Subwatershed).
4-15: Middle and Lower San Pedro Watershed Arizona Preserve Initiative Areas.
4-16: Middle and Lower San Pedro Watershed Wilderness and Riparian National Conservation Areas (acres).

6-1: HUC 10-Digit Numerical Designation and Subwatershed Name.
6-2: Fuzzy Membership Values (FMV) for HUC-10 Subwatersheds Based on ADEQ Water Quality Assessment Results.
6-3: Fuzzy Membership Values (FMV) for Metals, Assigned to each 10-Digit HUC Subwatershed, Based on Water Quality Assessment Results.
6-4: FMVs Based on the Number and Location of Mines.
6-5: RUSLE Calculated Soil Loss “A” (Kg/ha/yr).
6-6: Fuzzy Membership Values per Erosion Category.
6-7: Summary Results for Metals Based on the Fuzzy Logic Approach – Weighted Combination Approach.
6-8: Fuzzy Membership Values for Sediment Assigned to each 10-Digit HUC Subwatershed, Based on Water Quality Assessment Results.
6-9: Fuzzy Membership Values for Sediment Based on Land Ownership.
6-10: Fuzzy Membership Values for Sediment Based on the Human Use Index (HUI).
6-11: Fuzzy Membership Values and Runoff Categories.
6-12: Fuzzy Membership Values and Erosion Categories.
6-13: Summary Results for Sediment Based on the Fuzzy Logic Approach – Weighted Combination Approach.
6-14: Fuzzy Membership Values Assigned to each 10-Digit HUC Subwatershed, Based on Water Quality Assessment Results for Organics.
6-15: Fuzzy Membership Values for Organics, Based on the Human Use Index.
6-16: Summary Results for Organics, Based on the Fuzzy Logic – Weighted Combination Approach.
6-17: Fuzzy Membership Values for Selenium Assigned to each Subwatershed, Based on Water Quality Assessment Results.
6-18: Percentage of Agricultural Lands in each Subwatershed.
6-19: Fuzzy Membership Values Based on Number of Mines in each 10-digit HUC Subwatershed.
6-20: Fuzzy Membership Values for Selenium for each in each 10-digit HUC Subwatershed Based on the Number of Mines.
6-21: Summary Results for Selenium Based on the Fuzzy Logic – Weighted Combination Approach.

7-1: Proposed Treatments for Addressing Metals from Abandoned Mines.
7-2: Proposed Treatments for Addressing Erosion and Sedimentation.
7-3: Percentage Land Ownership by Subwatershed.
7-4: Proposed Treatments for Addressing Organics.

8-1: Summary of Weighted Fuzzy Membership Values for each Subwatershed.
8-2: Example Watershed Project Planning Schedule.
8-3: Example Project Schedule.

Appendices

Appendix A: Water Quality Data and Assessment Status, Middle and Lower San Pedro Watershed.

Appendix B: Suggested References, Middle and Lower San Pedro Watershed.

Appendix C: Revised Universal Soil Loss Equation (RUSLE) Modeling

Appendix D: Automated Geospatial Watershed Assessment Tool - AGWA